
Abstract
A scene-average automated cloud-cover assessment (ACCA)
algorithm has been used for the Landsat-7 Enhanced The-
matic Mapper Plus (ETM�) mission since its launch by NASA
in 1999. ACCA assists in scheduling and confirming the acqui-
sition of global “cloud-free” imagery for the U.S. archive. This
paper documents the operational ACCA algorithm and vali-
dates its performance to a standard error of �5 percent.
Visual assessment of clouds in three-band browse imagery
were used for comparison to the five-band ACCA scores from a
stratified sample of 212 ETM� 2001 scenes. This comparison
of independent cloud-cover estimators produced a 1:1 correla-
tion with no offset. The largest commission errors were at high
altitudes or at low solar illumination where snow was misclas-
sified as clouds. The largest omission errors were associated
with undetected optically thin cirrus clouds over water. There
were no statistically significant systematic errors in ACCA
scores analyzed by latitude, seasonality, or solar elevation
angle. Enhancements for additional spectral bands, per-pixel
masks, land/water boundaries, topography, shadows, multi-
date and multi-sensor imagery were identified for possible use
in future ACCA algorithms.

Introduction
A primary goal of the Landsat-7 (L7) mission is to populate
the U.S.-held Landsat data archive with seasonally refreshed,
essentially cloud-free Enhanced Thematic Mapper Plus
(ETM�) imagery of the Earth’s landmasses. To achieve this
goal, the Landsat Project Science Office (LPSO) at NASA’s
Goddard Space Flight Center (GSFC) developed the Long-
Term Acquisition Plan (LTAP): a mission-long imaging
strategy designed to optimize the 250 scenes acquired each
day by the ETM� (Arvidson et al., 2001, Arvidson et al.,
2006). An optimized scene acquisition has two primary
characteristics: a priority for acquisition on that date and a
low estimate of cloud contamination. A key element in the
LTAP is a 12-month global analysis of vegetation derived from
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Advanced Very High Resolution Radiometer (AVHRR) observa-
tions using the Normalized Difference Vegetation Index
(NDVI) (Goward et al., 1999). Use of the resulting seasonality
increases the probability of ETM� collects during periods of
heightened biological activity. Another key element of the
LTAP strategy is to use cloud-cover (CC) predictions to reduce
cloud contamination in acquired scenes.

In addition to the LTAP, acquisition scheduling by mis-
sion planners also requires reliable CC reports for imagery
that is already acquired. Therefore, an automated cloud-
cover assessment (ACCA) algorithm was created for determin-
ing the cloud component of each acquired ETM� scene. The
resulting CC assessment scores are used to monitor LTAP
performance and reschedule acquisitions as necessary. The
purpose of this paper is to document and evaluate the
operational ACCA algorithm and to suggest potential enhance-
ments for future Landsat-type missions.

Landsat-7 Mission Planning
To predict the probability of clouds in upcoming acquisi-
tions, the L7 LTAP employs historical CC patterns developed
by the International Satellite Cloud Climatology Project
(ISCCP) and daily predictions provided by NOAA’s National
Centers for Environmental Prediction (NCEP). Candidate
LTAP acquisitions are prioritized according to the forecasted
cloud environment normalized against the historical CC
average, as well as other system and resource constraints
(Arvidson et al., 2006). The priority for a candidate acqui-
sition receives a boost if the forecasted CC is lower than the
historical average (Gasch and Campana, 2000). The result
of the scheduling process is an imaging schedule for the
top 250 (on average) prioritized scenes. A schedule is
transmitted to the satellite every 24 hours and forms the
basis for operating the ETM� during its 17 percent maxi-
mum daily duty cycle.

These 250 scenes, once acquired, are transmitted to the
U.S. Geological Survey’s Earth Resources Observation and
Science (USGS/EROS) facility in Sioux Falls, South Dakota. The
Landsat Processing System (LPS) processes the raw data into
radiometrically uncalibrated and geometrically unresampled
imagery; generates the associated browse imagery, ACCA scores,
and other metadata; and sends the data set to the Landsat
Archive Manager (LAM) for storage and eventual distribution.
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During normal operations, the Landsat Mission Opera-
tions Center (MOC) located at GSFC receives the previous day’s
ACCA scores from the LAM. The scheduling software uses the
scores to separate successful acquisitions (those with suffi-
ciently low CC) from those that require re-imaging due to high
CC. Routine comparisons of ACCA scores to the CC predictions

are made to evaluate the reliability of the forecast informa-
tion; these comparisons treat the ACCA scores as “truth.” The
accuracy of the ACCA process is essential to the efficient LTAP
refreshing of the global archive with cloud-free imagery.

Automated Cloud-Cover Assessment (ACCA) Algorithm
Many of the essential elements of the ETM� ACCA algorithm
have been previously described together with the heritage
browse-based ACCA algorithm used in processing Thematic
Mapper (TM) imagery from the Landsat-4 (L4) and Landsat-5
(L5) satellites and the computer-driven limitations of both
(Irish, 2000).

The L7 ACCA algorithm is an unsupervised classifier for
clouds, which takes advantage of known spectral properties
of clouds, snow, bright soil, vegetation, and water. The
primary goal of the algorithm is to quickly produce accept-
able scene-average estimates for CC during initial LPS pro-
cessing. It was not intended to produce a “per-pixel” mask
indicating the presence or absence of clouds for every pixel
in L7 imagery. L7 “ACCA clouds” are defined as optically
thick or nearly opaque because the ETM� spectral bands do
not easily detect semi-transparent clouds such as Cirrus
Uncinus (i.e., “mare’s tail”), Cirrus Fibratus, and cloud
edges. Shadows from clouds are also not assessed. Further-
more, if all cirrus clouds were detected and used as a
criterion to “reject” scene acquisitions, then most acquisi-
tions would be “rejected” because of the pervasive character
of thin cirrus clouds in the majority of the 183 km by 180
km L7 scenes.
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Plate 1. Overview of L7 ETM� automated cloud-cover
assessment (ACCA) algorithm software flow.

Plate 2. ETM� ACCA flow chart (1 of 4): spectral cloud identification.
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Elements of ACCA Algorithm
ACCA uses five of the eight ETM� spectral bands:

• Band-2 (B2): 0.53 to 0.61 �m, Green, 30 m resolution
• Band-3 (B3): 0.63 to 0.69 �m, Red, 30 m resolution
• Band-4 (B4): 0.78 to 0.90 �m, Near Infrared, 30 m resolution
• Band-5 (B5): 1.55 to 1.75 �m, Shortwave Infrared, 30 m

resolution
• Band-6 (B6): 10.4 to 12.5 �m, Thermal Infrared, 60 m

resolution.

Bands 2 through 5 are converted to planetary spectral reflec-
tance (Markham and Barker, 1986), and Band-6, in its low
gain form, is converted to an at-satellite apparent brightness
temperature (Kelvin) as per the L7 Science Data Users
Handbook (Irish, 1999).

The ACCA algorithm consists of twenty-six specific
decisions or filters. Plate 1 illustrates the processing
overview. The algorithm flow is divided into four 
processes:

1. Pass-1 Spectral Cloud Identification (Plate 2) where the five
input images for B2 through B6 are used to identify warm-

cloud, cold-cloud, possible-cloud (ambiguous), snow, and
non-cloud masks.

2. B6 Cloud Signature Development (Plate 3) from the known
cloud pixels.

3. Pass-2 Thermal Band Cloud Separation (Plate 4), performed
by re-examining ambiguous pixels using only B6. Those
that qualify are assigned to either a warm or cold cloud
class.

4. Image-Based CC Assignments, Aggregation and Filling (Plate 5)
aggregates Pass-1 and Pass-2 clouds and fills mask cloud
holes using nearest-neighbor resampling.

The initial ETM� ACCA algorithm was developed prior
to the L7 launch in 1999 from analysis of about 500 L5 TM
scenes. During the three-month On-Orbit Initialization and
Verification Period (OIVP) for ETM�, it was necessary to
change the values of the ACCA parameters before satisfac-
tory CC estimates were obtained. Only minor adjustments
to the parameters have been made since ETM� began
acquiring operational imagery 29 June 1999. Complete
algorithm details can be found in the L7 Science Data
Users Handbook.

Plate 3. ETM� ACCA flow chart (2 of 4): band 6 (B6) cloud signature development.
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Validation of ACCA Algorithm
Following the first few years of L7 operations, the LPSO staff
undertook a validation of all elements of the LTAP including
ACCA (see Arvidson et al., 2006; Markham et al., 2006). The
LTAP was essentially stable by 2001, therefore the approxi-
mately 83,000 ETM� scenes in the U.S. archive for calendar
year 2001 were sampled to evaluate ACCA performance. The
approach chosen to validate ACCA performance was super-
vised classification of a stratified sample using the LPS-
produced three-band browse imagery for comparison to
corresponding ACCA scores.

LPS browse images are produced by wavelet compres-
sion and subsampling of radiometrically-corrected imagery
by a factor of 64 (8 � 8). Browse imagery at a spatial reso-
lution of 240 meters (http://glovis.usgs.gov/) is produced. B5,
B4, and B3 are used to define the red (R), green (G), and
blue (B) elements respectively. A linear contrast stretch is
applied to each browse image to ensure adequate contrast
in the RGB product. A reduced-resolution browse-scene
approach to assessing CC was feasible because ACCA repre-
sents a single number for the entire scene. Furthermore, the
ACCA definition of clouds as nearly opaque and the ability to
visually compare the supervised classification of browse
imagery to adjacent scenes and other dates allowed an
iterative and precise analysis approach. This visual cloud-
cover assessment (VCCA) was used as a measure of the true
CC in the scene.

Visual Cloud-Cover Assessment (VCCA) Validation Procedure
Browse imagery was downloaded to a desktop computer
as 24-bit RGB files. Calculations were accomplished using
Adobe® Photoshop® image processing software with 24-bit
precision. Edges of the 825-column by 750-line browse input
imagery, where the bands are offset from each other, were
first trimmed to a common size of 775 columns by 750 lines.
The magic wand and freehand lasso tools of Photoshop® were
subsequently used to isolate clouds. The wand employs a
seed-fill threshold algorithm to compute regions of brightness-
similarity based on a mouse click of a single pixel. The
algorithm compares the selected pixel’s brightness values to
all other pixels and retains those within a selectable tolerance
threshold. For example, clicking on an RGB-browse-image
pixel with values R:200, G:220, and B:240 and a tolerance set
to 5, results in selection of pixels in the ranges: 195�R�205,
215�G�225, and 235�B�245. Additional cloud pixels were
added by using the wand repeatedly until the cumulative
selection of visible clouds had essentially zero possibility of
VCCA omission errors. Snowfields and other unwanted bright
features were then manually subtracted using the lasso tool to
reduce VCCA commission errors. After the VCCA scores were
established, the resulting cloud pixels were filled with 255s
and all others a value of zero. The result was a binary cloud
mask that allowed a CC percentage computation (Plate 6) that
served as the cloud “truth” for validating the accuracy of the
official ACCA USGS/EROS scores.
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Plate 4. ETM� ACCA flow chart (3 of 4): pass-2 thermal band cloud separation.
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Plate 5. ETM� ACCA flow chart (4 of 4): image-based assignments, aggregation, and filling.

Plate 6. Illustrative ETM� B3/B4/B5 RGB USGS/EROS browse image and Photoshop® VCCA (visual
cloud-cover assessment) mask of “true” cloud-cover (CC).
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Systematic Random Sample Design
The Earth was systematically subdivided into nine latitudi-
nal zones on the basis of environmental equivalence, inde-
pendent of the amount of land area within each zone. The
six mid-latitude zones span 15° while the Equatorial and
Polar zones cover 30°. For eight of these zones, 21 World-
wide Reference System (WRS) locations were randomly
selected from the approximate 4,000 unique daylight WRS
locations available over land. For the Polar South zone, only
20 samples were selected (the reason for this is explained
below). If a selected WRS location was dominated by water,
the sample was replaced. The resulting 188 WRS locations
are illustrated in Plate 7.

For each of the 188 randomly selected WRS locations,
the “peak NDVI” scene was selected from the time interval
when the solar zenith angle was within 10° of minimum at
that location. This produced a systematic random sample
design focused on the vegetative growth peak during the
growing season.

Finally, for each zone except the Polar South, one of the
21 WRS locations was randomly selected randomly for
analysis of seasonal variability. For this one WRS location
per zone, additional scenes were selected from the 2001 U.S.
archive for the three remaining seasons of the year, namely
winter, spring, and fall. The peak-NDVI scenes from these
eight seasonal sets were removed from the original 188
locations leaving 180 scenes for the ACCA/VCCA peak-NDVI
analysis. This was done to ensure unique seasonal analysis.
No seasonal study was attempted for the Polar South zone
due to the limited imaging window for Antarctica.

These peak-NDVI and seasonal samplings were designed
to test for possible ACCA-dependence on latitude, solar
illumination angle, and season. The histogram of ACCA
scores from this sampling was statistically identical to that
for the 83,000 2001 scenes, which provided an independent
validation of the sampling randomness.

ACCA Validation Results
The first concern that was addressed was the possibility
that errors were induced in the VCCA process due to the
difference in processing between browse imagery and full-
resolution imagery. The browse-reduction process conceals
clouds less than about 240 meters in size, resulting in
possible VCCA omission errors. ACCA examines each pixel at
nominal resolution. A systematic VCCA omission error was
not observed, which eliminated this concern.

ACCA Versus VCCA Validation
The 212 ACCA scores for the 180 peak-NDVI and 32 seasonal
scenes were retrieved from the USGS/EROS LAM and com-
pared to the browse truth scores obtained by the manual
VCCA procedure described above. A validation curve of
automated ACCA versus VCCA scores for the 180 high-NDVI
scenes is given in Plate 8. A perfect validation would cor-
respond to a linear regression fit with an intercept through
the origin, a slope of unity and zero dispersion from the
fit line. This would validate both the ACCA and VCCA scores.

The high-NDVI sample had three statistically identifiable
outliers. The three outliers in the random sample equate to
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Plate 7. 188 random Landsat WRS locations in nine latitudinal zones.
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an expectation that ACCA will under-perform by more than
�15 percent at a 2 percent rate. Errors of omission and
commission are discussed in the outliers section. The three
outliers were omitted from the regression fit and are labeled
as 1, 2, and 3 in Plate 8.

The observed fit between the remaining 177 scenes
allows for acceptance of the null hypothesis that the inter-
cept is zero and the slope is unity within a standard error of
�5 percent. The variance unaccounted for by the linear fit is
2 percent. The residuals are random. Consequently, the
expected precision of the ACCA algorithm is �5 percent in 98
percent of all 2001 scenes.

Four of the 180 high-NDVI images, or about 2 percent,
contained electronic band-specific gain changes within a
scene from intentional commands to change the gain state.
Currently, ETM� ACCA images are radiometrically cor-
rected in their entirety based on the gain state of the first
scan line in a scene. Gain changes are not recognized
during ACCA processing which may engender discordant
CC scores related to individual bands, location in a scene,
and imaged ground features. The random scene sampling
allowed a 2 percent sample of gain change scenes to be
representative of the 2001 archive. Therefore, the gain-
change scenes were retained. None exhibited a statistically

significant deviation from the regression line. However, a
sample of four is too few to validate the scene-average
ACCA for scenes with gain changes. Tracking and adjusting
for gain changes is necessary if accurate per-pixel cloud
masks are generated.

ACCA Seasonal Independence
The results for non-peak NDVI are presented in Plate 9 for a
sample of four 2001 seasonal scenes across eight WRS sites.
The residuals from a linear fit were examined and no
outliers were rejected. Three residuals are labeled as 4, 5,
and 6 for later discussion of possible error sources. Two of
the 32 seasonal scenes had gain changes, but no removal
rationale existed. One gain-change scene, labeled 6 in Plate
9, had a large residual that is examined further in the outlier
section.

The observed ACCA versus VCCA fit of the 32 seasonal
scenes allows for acceptance of the null hypothesis that
a zero intercept exists and the slope is unity but with a
higher standard error of �7 percent compared to �5 percent
for the peak-NDVI scenes. Variance unaccounted for using
the linear fit is 7 percent. The seasonal residuals are ran-
dom. Again, no evidence exists regarding a systematic bias
in the ACCA scores. One can conclude that ACCA is an unbi-
ased estimator of CC for seasonal data at a precision of �7
percent.

ACCA Latitude Independence
One method to test for possible effects of latitude is to
examine differences between ACCA versus VCCA validation
curves for each of the nine stratified zones. The results
of nine linear regressions with three outliers removed are
summarized in Table 1. Within statistical uncertainty, each
zone has a zero intercept and a slope of unity, which
represents the criteria for an unbiased estimate of ACCA CC.
Standard errors range from �3 percent to �5 percent with
average unaccounted-for variance of 2 percent, which is
consistent with the values from the collective set of 177
peak-NDVI scenes. The residuals from each zone are random.
Collectively, these independent statistical assessments of
ACCA validation for each zone are justification for stating
that ACCA accuracy is latitude independent.

The 20 random samples drawn in the Polar South
matched the ACCA standard error of �5 percent in other
zones. Other studies (Choi and Bindschadler, 2002) have
demonstrated some enhancement in cloud detection over ice.

The conclusion is reached that ACCA is an unbiased
estimator of CC for data taken at different latitudes to a
precision of �5 percent.
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Plate 8. Peak-NDVI ACCA/VCCA validation curve (�5
percent) for 180 WRS locations in 2001.

Plate 9. Four season ACCA/VCCA validation curve (�7
percent) for eight Landsat WRS locations in 2001.

TABLE 1. REGRESSION RESULTS FOR LATITUDE-DEPENDENT ANALYSIS

DEMONSTRATING NO SYSTEMATIC ACCA ERROR. FOR EACH ZONE THE NULL

HYPOTHESIS OF ZERO INTERCEPT AND UNITY SLOPE WAS ACCEPTED

100
Zone Samples Intercept SD Slope SD SE (1-RSQ)

1 20 1.079 0.866 0.978 0.019 2.93 0.75
2 20 0.956 1.944 0.989 0.040 5.97 2.96
3 19 1.785 1.577 0.990 0.039 5.13 2.78
4 20 0.664 0.705 1.046 0.025 2.61 1.06
5 19 �1.009 1.964 1.055 0.033 4.90 1.74
6 20 �1.461 0.775 0.936 0.036 2.93 2.71
7 19 0.864 1.422 1.018 0.037 4.71 2.29
8 20 3.721 2.220 0.952 0.037 4.87 2.73
9 20 �3.125 1.821 0.988 0.038 5.38 2.67
Average 19.667 0.386 1.477 0.995 0.034 4.381 2.191
SD 0.500 1.996 0.570 0.039 0.007 1.227 0.815
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Solar Illumination Angle Independence
A cosine of the solar zenith angle was used to convert at-
satellite radiances into planetary reflectance for use in ACCA,
therefore no dependence on solar illumination angle was
expected from analog data of infinite precision, based on
radiance considerations alone. However, ETM� is only an
eight-bit radiometer and lower solar irradiance increases the
percent uncertainty of lower at-satellite radiances due to
limiting ETM� signal-to-noise values. Consequently, a linear
test for correlation of the ACCA error with solar illumination
angle was performed. ETM� acquisitions for the U.S. archive
acquired after 2000 had no collects below 15° solar eleva-
tion, so ACCA evaluation below this angle was not possible.
Comparison of ACCA/VCCA differences versus solar elevation
angles revealed no systematic trend. The null hypothesis
that the slope was unity and intercept zero within the
uncertainty of a linear fit was accepted. A solar angle
correlation was not observed in the data.

Characterization of ACCA Outliers and Extreme Residuals
Six unusual ACCA/VCCA pairs were identified and are high-
lighted in Plates 8 and 9. Re-examination of the VCCA images
and the ACCA scores verified that five of these pairs repre-
sented incorrect ACCA values. One of the six, labeled as 5 in
Plate 9, was actually a VCCA error where the ACCA algorithm
had successfully detected transparent cirrus more thoroughly
than VCCA. ACCA error analysis did not include this outlier.
Primary ACCA commission and omission CC errors are sum-
marized for the remaining five pairs in Table 2.

The largest commission errors are at high altitudes
over scenes that have snow during summer. Mountainous
snowfields can saturate B2 in high- and low-gain mode,
causing snow to be classified as cloud during Pass-1. The
result is a distorted pass-1 thermal profile, which leads
to high commission errors. Though saturated B2 imagery
occurs over snow, the ACCA algorithm could perform cor-
rectly by adjusting cloud-discerning parameters according
to the elevation of the imaged terrain.

The largest omission errors in ACCA are associated with
optically-thin cirrus clouds over water. The ACCA algorithm
typically underestimates semi-transparent cirrus over water by
about 30 percent. The lack of an ETM� 1.33 or 1.88 �m cirrus-
detection band renders clouds of this type invisible unless
they are nearly opaque or exhibit a particularly cold thermal
signal. In general, the B6 thermal responses for optically-thin
cirrus are weak and contribute little to their recognition. The
human eye visualizes subtle spatially-transparent cirrus cloud
shapes in three-band browse over water, whereas the auto-
mated single-band algorithms within ACCA do not. The oppo-
site is sometimes true over land as indicated by the VCCA error
on pair 5 in Plate 9. A possible solution, discussed later,
involves masking the oceans with a land/water mask.

Discussion: Proposed Enhancements
The operational L7 ACCA algorithm was developed with
certain constraints that no longer apply because of today’s
increased computer processing and storage capabilities.
As a result of seven years of on-orbit experience with the
operational ACCA algorithm and the validation experience,
it is now reasonable to suggest additional enhancements
that represent added value for today’s users and for future
systems. Potential enhancements include using additional
spectral bands, binary cloud masks, land/water boundary
maps, elevation models, shadow masks, and multi-date and
multi-sensor imagery.

Binary Cloud Mask Enhancement
We assume that cloud products for future 10 to 100 meter
moderate spatial resolution sensors will define various types
of clouds and cloud shadows as binary masks, which will
accompany user-ordered products. For example, multi-date
image compositing techniques are frequently used to gen-
erate cloud-free composites for direct radiometric modeling
of both intensive and extensive variables. Other disciplines
require same-day imagery for every pixel even if covered
by thin cirrus clouds. A per-pixel cloud mask would sup-
port both types of users. The current L7 ETM� ACCA algo-
rithm internally generates masks that disappear after pro-
cessing. These or similar ones should be saved and made
available. Analogous binary cloud masks currently exist for
other coarse-resolution sensors such as the Moderate-
resolution Imaging Spectroradiometer (MODIS) (Platnick
et al., 2003).

Cirrus Spectral Band Enhancement
A portion of the existing “cloud-free” ETM� archive, with an
ACCA score of 10 percent or less, contains transparent cirrus
clouds which the current ACCA algorithm cannot reliably
identify. The specifications for the future Landsat Data
Continuity Mission (LDCM) sensor call for spectral observa-
tions (1.38 �m band or equivalent) to identify cirrus clouds,
similar to the EOS MODIS sensors on the Terra and Aqua
satellites (Gao and Kaufman, 1995; Gao et al., 1998; Brill,
2006). When a cirrus spectral band does become available
for Landsat-like sensors, a new definition of non-opaque
clouds will be required to indicate if at least some of the
ground is visible through a cloud.

Panchromatic Spectral Band Enhancement
The higher spatial resolution 15 m B8 panchromatic pixels
were not available for use in the current ACCA algorithm.
When combined with internally-generated date-specific
masks for commission classes such as snow, desert, and
even water, B8 imagery affords a method for building cloud
mask estimates that are more inclusive of cloud edges.
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TABLE 2. CAUSE OF ACCA OMISSION AND COMMISSION ERRORS IN CLOUD COVER (CC) ESTIMATES FOR EXTREME ACCA/VCCA PAIR RESIDUALS

FROM THE VALIDATION CURVE

Extreme ACCA VCCA CC WRS WRS
Value Plate Score Score error Path Row Date Location Cause Fix

Outlier 1 8 80 42 �38 143 038 05/31/01 Tibet Snow as Clouds; elevation
B2 Saturation

Outlier 2 8 52 22 �30 192 056 11/14/01 75% Ocean off Cold water land/water 
Africa as Clouds mask

Outlier 3 8 1 40 �39 073 090 12/14/01 Ocean off Cirrus over Water land/water
New Zealand mask

Outlier 4 9 67 83 �16 231 093 08/11/01 Mountains in Snow as Clouds elevation
Chile/Argentina

Outlier 5 9 74 96 �22 091 087 03/15/01 67% Ocean off Cirrus over Water land/water
Australia mask
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Multi-Spectral Band Enhancement
The current ACCA algorithm was limited to a single band or
single variable thresholding. A more powerful approach to
unsupervised classification is to use maximum likelihood
classifiers on all the bands or on a transformed combination
of bands.

Binary Land/Water Mask Enhancement
Currently, the ACCA algorithm computes CC scores for an
entire scene regardless of the Earth features imaged, includ-
ing large areas of ocean that interface with land. Mission
operations problems arise when identified clouds exist only
over water. Unacceptable cloud scores are reported, causing
the MOC to reschedule acquisitions for scenes that meet the
success criteria as observed in Plate 10. This scene would be
slated for re-acquisition due to an unacceptable 34 percent
ACCA score when in fact the land area was cloud-free. For
some areas of the Earth, such as the west coast of Chile, this
phenomenon is common, resulting in wasteful consumption
of satellite acquisition time.

A prototype ACCA enhancement has been developed to
apply an ocean-land mask to each ETM� scene prior to cloud
assessment. The mask employed is the 1 km sea-land mask
developed as part of the Global Land AVHRR Data Set Project
(Eidenshink and Faundeen, 1994). Separate ACCA parameters
could also be used with the ocean-land to reduce the most
significant omission errors of 30 percent (�10 percent) for
thin cirrus over water, as reported in Table 2. Additionally,
cloud-free imagery or mosaics can be used to validate and
update the land/water mask’s geometric precision.

DEM Topographic Enhancement
As noted previously, separation of clouds and snow under
low sun illumination angles and at high altitudes is a prob-
lem that might be resolved with elevation information. The
snow and cloud confusion occurs at higher elevations with
regularity in Mongolia and Argentina during the winter
months. Global digital elevation models (DEMs) exist that
have a 1 km spatial resolution, sufficient for ACCA elevation-
specific parameter adjustments. Dynamic scene-dependent

parameters will reduce commission errors identifying snow
as cloud regardless of solar illumination angle, including the
two illustrated in Table 2.

Binary Cloud Shadow Mask Enhancement
The ACCA algorithm was designed to discern clouds but not
their projected shadows. Clouds and cloud shadows meas-
ured together represent an enhanced indicator of total image
usability. Three cloud-shadow analysis approaches have
been identified. A spectrally-based approach assumes that
darker pixels are shadowed surfaces and tests that hypothe-
sis against a cloud mask for that image. A spectral approach
is the most independent to the cloud masking algorithm,
which potentially could lead to the highest omission errors.
A second approach is temperature-based, where the B6
brightness temperature of the clouds in the cloud mask is
used to estimate their altitude. Cloud altitude, sun azimuth,
and sun elevation are used to calculate the expected cloud
shadows. Expected errors are largely dependent on the
estimated cloud altitude accuracies. A third minimum-
omission cloud-shadow approach assumes a maximum
height or an estimate based on a 2 to 3 standard deviation
upper limit on the cloud altitude. An exaggerated shadow
mask, large enough to ensure that pixels outside of it are
shadow-free, is then projected.

Multi-Date Cloud Masking Enhancement
The power of viewing the same scene on different dates to
identify clouds on any one date was realized during VCCA
analysis. An automated multi-date compositing process is
feasible because cloud distribution patterns vary from scene
to scene. A comparison of imagery on dates before and after
a scene of interest reduces potential errors of commission
caused by land features such as bright sand and snow.

Multi-sensor Cloud Masking
The biggest advancement in CC identification may one
day come from using cloud heights and cloud masks from
coarser resolution sensor systems such as MODIS and Geosta-
tionary Operational Environmental Satellite (GOES). Assum-
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Plate 10. Illustrative current rejected image (ACCA � 34 percent CC) and proposed enhancement of
accepted land-masked image (ACCA � 0 percent CC).
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ing automated registration of data from multiple sources,
the potential exists for interpolating cloud movement from
half-hourly GOES images and/or employing the more infor-
mation-rich cloud products from MODIS and Visible Infrared
Imaging Radiometer Suite (VIIRS). When a multi-sensor
cloud-masking enhancement is available, elimination of CC
errors of both omission and commission at aggregated pixel
levels from moderate resolution imagery becomes possible.

Conclusions
The ACCA algorithm was designed to determine the quantity
of cloud-contaminated pixels over land on an ETM� scene
basis. The pre-launch reliability goal for the ACCA algorithm
was an accuracy of 10 percent actual CC for 95 percent of all
LTAP imagery. The algorithm passes that reliability test for
peak-NDVI acquisitions and narrowly misses for seasonal
acquisitions.

The global Landsat image archive is the most relevant
moderate spatial resolution (10 to 100 m) satellite land
remote sensing archive in existence. From 2000 through 2005,
USGS/ EROS-archived ACCA cloud-cover scores of 10 percent or
less increased from 35 percent to 42 percent, while scores
for cloud-cover greater than 50 percent correspondingly
decreased from 33 percent to 28 percent. The assumption
that no real change in global CC over land occurred during
this period leads to the conclusion that the feedback of ACCA
scores into the scheduling process has contributed to a 20
percent improved efficiency in acquiring cloud-free ETM�
imagery. As of 2006, more than 1.8 million Landsat scenes
have been accumulated in the U.S. archive, including more
than 600,000 scenes from ETM�. The percentage of usable
cloud-free or low-cloud-content imagery is significantly
higher in the ETM� archive, as compared to the other sensors.

This ACCA validation documents the strengths and
limitations of the operational scene-average L7 ACCA algo-
rithm (Table 3). It may also serve as a departure point for
ACCA approaches to be used in future Landsat-type missions.

The suggested ACCA enhancements are important in a
century that requires cloud-free mosaics of the Earth for
monitoring and modeling environmental change. Future

Earth remote sensing systems will place increasing impor-
tance on the ability to remove imaged clouds. Multi-date
compositing facilitated by increased revisits and multiple
satellites perhaps represents the best approach. Until then,
a finely-tuned, enhanced ACCA algorithm represents an
important tool for research scientists to study the biosphere
with an unobstructed view.
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TABLE 3. STRENGTHS AND WEAKNESSES OF THE L7 ETM� ACCA ALGORITHM

Strengths Weaknesses

Fully automated No per-pixel cloud masks (only
methodology scene and 

quadrant scores),
Five of eight ETM�

spectral bands
No ancillary information No cloud shadows mask

required
No geometric processing Thin cirrus clouds often missed
Near-real time availability Ground fog occasionally

for browsing and scheduling missed (too warm)
No dependence on latitude, Snow occasionally

season, or solar zenith angle identified as cloud
Precise to �5% for

scene-averaged cloud-cover
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